
HTTPie: a CLI, cURL-like tool for humans
HTTPie (pronounced aitch-tee-tee-pie) is a command line HTTP client. Its goal is to make CLI interaction
with web services as human-friendly as possible. It provides a simple http command that allows for
sending arbitrary HTTP requests using a simple and natural syntax, and displays colorized output. HTTPie
can be used for testing, debugging, and generally interacting with HTTP servers.

Contents
1 Main features 5

2 Installation 5

2.1 macOS 5

2.2 Linux 6

2.3 Windows, etc. 6

2.4 Python version 6

2.5 Unstable version 6

3 Usage 7

3.1 Examples 7

4 HTTP method 8

5 Request URL 8

5.1 Querystring parameters 8

5.2 URL shortcuts for localhost 8

5.3 Custom default scheme 9

6 Request items 9

6.1 Escaping rules 9

7 JSON 10

7.1 Default behaviour 10

7.2 Explicit JSON 10

7.3 Non-string JSON fields 10

8 Forms 11

8.1 Regular forms 11

8.2 File upload forms 11

9 HTTP headers 12

9.1 Default request headers 12

9.2 Empty headers and header un-setting 12

10 Cookies 12

11 Authentication 13

11.1 Basic auth 13

11.2 Digest auth 13

11.3 Password prompt 13

11.4 .netrc 13

11.5 Auth plugins 14

12 HTTP redirects 14

12.1 Follow Location 14

12.2 Showing intermediary redirect responses 14

12.3 Limiting maximum redirects followed 14

13 Proxies 15

13.1 Environment variables 15

13.2 SOCKS 15

14 HTTPS 15

14.1 Server SSL certificate verification 15

14.2 Custom CA bundle 15

14.3 Client side SSL certificate 15

14.4 SSL version 16

14.5 SNI (Server Name Indication) 16

15 Output options 16

15.1 What parts of the HTTP exchange should be printed 17

15.2 Viewing intermediary requests/responses 17

15.3 Conditional body download 17

16 Redirected Input 18

16.1 Request data from a filename 19

17 Terminal output 19

17.1 Colors and formatting 19

17.2 Binary data 19

18 Redirected output 20

19 Download mode 20

19.1 Downloaded filename 20

19.2 Piping while downloading 21

19.3 Resuming downloads 21

19.4 Other notes 21

20 Streamed responses 21

20.1 Disabling buffering 21

20.2 Examples use cases 22

21 Sessions 22

21.1 Named sessions 22

21.2 Anonymous sessions 23

21.3 Readonly session 23

22 Config 23

22.1 Config file location 23

22.2 Configurable options 23

22.2.1 default_options 23

22.2.2 __meta__ 23

22.3 Un-setting previously specified options 23

23 Scripting 23

23.1 Best practices 24

24 Meta 24

24.1 Interface design 24

24.2 User support 25

24.3 Related projects 25

24.3.1 Dependencies 25

24.3.2 HTTPie friends 25

24.3.3 Alternatives 25

24.4 Contributing 25

24.5 Change log 25

24.6 Artwork 25

24.7 Licence 25

24.8 Authors 26

1 Main features

• Expressive and intuitive syntax

• Formatted and colorized terminal output

• Built-in JSON support

• Forms and file uploads

• HTTPS, proxies, and authentication

• Arbitrary request data

• Custom headers

• Persistent sessions

• Wget-like downloads

• Python 2.7 and 3.x support

• Linux, macOS and Windows support

• Plugins

• Documentation

• Test coverage

2 Installation

2.1 macOS
On macOS, HTTPie can be installed via Homebrew (recommended):

$ brew install httpie

A MacPorts port is also available:

http://brew.sh/

$ port install httpie

2.2 Linux
Most Linux distributions provide a package that can be installed using the system package manager, for
example:

Debian, Ubuntu, etc.
$ apt-get install httpie

Fedora
$ dnf install httpie

CentOS, RHEL, ...
$ yum install httpie

Arch Linux
$ pacman -S httpie

2.3 Windows, etc.
A universal installation method (that works on Windows, Mac OS X, Linux, …, and always provides the
latest version) is to use pip:

Make sure we have an up-to-date version of pip and setuptools:
$ pip install --upgrade pip setuptools

$ pip install --upgrade httpie

(If pip installation fails for some reason, you can try easy_install httpie as a fallback.)

2.4 Python version
Although Python 2.7 is supported as well, it is strongly recommended to install HTTPie against the latest
Python 3.x whenever possible. That will ensure that some of the newer HTTP features, such as SNI
(Server Name Indication), work out of the box. Python 3 is the default for Homebrew installations starting
with version 0.9.4. To see which version HTTPie uses, run http --debug.

2.5 Unstable version
You can also install the latest unreleased development version directly from the master branch on
GitHub. It is a work-in-progress of a future stable release so the experience might be not as smooth.

On macOS you can install it with Homebrew:

$ brew install httpie --HEAD

Otherwise with pip:

$ pip install --upgrade https://github.com/jakubroztocil/httpie/archive/master.tar.gz

Verify that now we have the current development version identifier with the -dev suffix, for example:

https://pip.pypa.io/en/stable/installing/
https://github.com/jakubroztocil/httpie/blob/0af6ae1be444588bbc4747124e073423151178a0/httpie/__init__.py#L5

$ http --version
1.0.0-dev

3 Usage
Hello World:

$ http httpie.org

Synopsis:

$ http [flags] [METHOD] URL [ITEM [ITEM]]

See also http --help.

3.1 Examples
Custom HTTP method, HTTP headers and JSON data:

$ http PUT example.org X-API-Token:123 name=John

Submitting forms:

$ http -f POST example.org hello=World

See the request that is being sent using one of the output options:

$ http -v example.org

Use Github API to post a comment on an issue with authentication:

$ http -a USERNAME POST https://api.github.com/repos/jakubroztocil/httpie/issues/83/comments body='HTTPie is awesome! :heart:'

Upload a file using redirected input:

$ http example.org < file.json

Download a file and save it via redirected output:

$ http example.org/file > file

Download a file wget style:

$ http --download example.org/file

Use named sessions to make certain aspects or the communication persistent between requests to the
same host:

$ http --session=logged-in -a username:password httpbin.org/get API-Key:123

$ http --session=logged-in httpbin.org/headers

http://developer.github.com/v3/issues/comments/#create-a-comment
https://github.com/jakubroztocil/httpie/issues/83

Set a custom Host header to work around missing DNS records:

$ http localhost:8000 Host:example.com

4 HTTP method
The name of the HTTP method comes right before the URL argument:

$ http DELETE example.org/todos/7

Which looks similar to the actual Request-Line that is sent:

DELETE /todos/7 HTTP/1.1

When the METHOD argument is omitted from the command, HTTPie defaults to either GET (with no request
data) or POST (with request data).

5 Request URL
The only information HTTPie needs to perform a request is a URL. The default scheme is, somewhat
unsurprisingly, http://, and can be omitted from the argument – http example.org works just fine.

5.1 Querystring parameters
If you find yourself manually constructing URLs with querystring parameters on the terminal, you may
appreciate the param==value syntax for appending URL parameters. With that, you don't have to worry
about escaping the & separators for your shell. Also, special characters in parameter values, will also
automatically escaped (HTTPie otherwise expects the URL to be already escaped). To search for
HTTPie logo on Google Images you could use this command:

$ http www.google.com search=='HTTPie logo' tbm==isch

GET /?search=HTTPie+logo&tbm=isch HTTP/1.1

5.2 URL shortcuts for localhost
Additionally, curl-like shorthand for localhost is supported. This means that, for example :3000 would
expand to http://localhost:3000 If the port is omitted, then port 80 is assumed.

$ http :/foo

GET /foo HTTP/1.1
Host: localhost

$ http :3000/bar

GET /bar HTTP/1.1
Host: localhost:3000

$ http :

GET / HTTP/1.1
Host: localhost

5.3 Custom default scheme
You can use the --default-scheme <URL_SCHEME> option to create shortcuts for other protocols than
HTTP:

$ alias https='http --default-scheme=https'

6 Request items
There are a few different request item types that provide a convenient mechanism for specifying HTTP
headers, simple JSON and form data, files, and URL parameters.

They are key/value pairs specified after the URL. All have in common that they become part of the actual
request that is sent and that their type is distinguished only by the separator used: :, =, :=, ==, @, =@, and
:=@. The ones with an @ expect a file path as value.

Item Type Description

HTTP Headers Name:Value Arbitrary HTTP header, e.g. X-API-Token:123.

URL parameters
name==value

Appends the given name/value pair as a query string parameter to the
URL. The == separator is used.

Data Fields field=value,
field=@file.txt

Request data fields to be serialized as a JSON object (default), or to be
form-encoded (--form, -f).

Raw JSON fields
field:=json,
field:=@file.json

Useful when sending JSON and one or more fields need to be a
Boolean, Number, nested Object, or an Array, e.g.,
meals:='["ham","spam"]' or pies:=[1,2,3] (note the quotes).

Form File Fields
field@/dir/file

Only available with --form, -f. For example
screenshot@~/Pictures/img.png. The presence of a file field
results in a multipart/form-data request.

Note that data fields aren't the only way to specify request data: Redirected input is a mechanism for
passing arbitrary request data.

6.1 Escaping rules
You can use \ to escape characters that shouldn't be used as separators (or parts thereof). For instance,
foo\==bar will become a data key/value pair (foo= and bar) instead of a URL parameter.

Often it is necessary to quote the values, e.g. foo='bar baz'.

If any of the field names or headers starts with a minus (e.g., -fieldname), you need to place all such
items after the special token -- to prevent confusion with --arguments:

$ http httpbin.org/post -- -name-starting-with-dash=foo -Unusual-Header:bar

POST /post HTTP/1.1
-Unusual-Header: bar
Content-Type: application/json

{
 "-name-starting-with-dash": "foo"
}

7 JSON
JSON is the lingua franca of modern web services and it is also the implicit content type HTTPie uses by
default.

Simple example:

$ http PUT example.org name=John email=john@example.org

PUT / HTTP/1.1
Accept: application/json, */*
Accept-Encoding: gzip, deflate
Content-Type: application/json
Host: example.org

{
 "name": "John",
 "email": "john@example.org"
}

7.1 Default behaviour
If your command includes some data request items, they are serialized as a JSON object by default.
HTTPie also automatically sets the following headers, both of which can be overwritten:

Content-Type application/json

Accept application/json, */*

7.2 Explicit JSON
You can use --json, -j to explicitly set Accept to application/json regardless of whether you are
sending data (it's a shortcut for setting the header via the usual header notation:
http url Accept:'application/json, */*'). Additionally, HTTPie will try to detect JSON
responses even when the Content-Type is incorrectly text/plain or unknown.

7.3 Non-string JSON fields
Non-string fields use the := separator, which allows you to embed raw JSON into the resulting object. Text
and raw JSON files can also be embedded into fields using =@ and :=@:

$ http PUT api.example.com/person/1 \
 name=John \
 age:=29 married:=false hobbies:='["http", "pies"]' \ # Raw JSON
 description=@about-john.txt \ # Embed text file
 bookmarks:=@bookmarks.json # Embed JSON file

PUT /person/1 HTTP/1.1
Accept: application/json, */*
Content-Type: application/json
Host: api.example.com

{
 "age": 29,
 "hobbies": [
 "http",
 "pies"
],
 "description": "John is a nice guy who likes pies.",
 "married": false,
 "name": "John",
 "bookmarks": {
 "HTTPie": "http://httpie.org",
 }
}

Please note that with this syntax the command gets unwieldy when sending complex data. In that case it's
always better to use redirected input:

$ http POST api.example.com/person/1 < person.json

8 Forms
Submitting forms is very similar to sending JSON requests. Often the only difference is in adding the
--form, -f option, which ensures that data fields are serialized as, and Content-Type is set to,
application/x-www-form-urlencoded; charset=utf-8. It is possible to make form data the
implicit content type instead of JSON via the config file.

8.1 Regular forms

$ http --form POST api.example.org/person/1 name='John Smith'

POST /person/1 HTTP/1.1
Content-Type: application/x-www-form-urlencoded; charset=utf-8

name=John+Smith

8.2 File upload forms
If one or more file fields is present, the serialization and content type is multipart/form-data:

$ http -f POST example.com/jobs name='John Smith' cv@~/Documents/cv.pdf

The request above is the same as if the following HTML form were submitted:

<form enctype="multipart/form-data" method="post" action="http://example.com/jobs">
 <input type="text" name="name" />
 <input type="file" name="cv" />
</form>

Note that @ is used to simulate a file upload form field, whereas =@ just embeds the file content as a
regular text field value.

9 HTTP headers
To set custom headers you can use the Header:Value notation:

$ http example.org User-Agent:Bacon/1.0 'Cookie:valued-visitor=yes;foo=bar' \
 X-Foo:Bar Referer:http://httpie.org/

GET / HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Cookie: valued-visitor=yes;foo=bar
Host: example.org
Referer: http://httpie.org/
User-Agent: Bacon/1.0
X-Foo: Bar

9.1 Default request headers
There are a couple of default headers that HTTPie sets:

GET / HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: HTTPie/<version>
Host: <taken-from-URL>

Any of these except Host can be overwritten and some of them unset.

9.2 Empty headers and header un-setting
To unset a previously specified header (such a one of the default headers), use Header::

$ http httpbin.org/headers Accept: User-Agent:

To send a header with an empty value, use Header;:

$ http httpbin.org/headers 'Header;'

10 Cookies
HTTP clients send cookies to the server as regular HTTP headers. That means, HTTPie does not offer
any special syntax for specifying cookies — the usual Header:Value notation is used:

Send a single cookie:

$ http example.org Cookie:sessionid=foo

GET / HTTP/1.1
Accept: */*

Accept-Encoding: gzip, deflate
Connection: keep-alive
Cookie: sessionid=foo
Host: example.org
User-Agent: HTTPie/0.9.9

Send multiple cookies (note the header is quoted to prevent the shell from interpreting the ;):

$ http example.org 'Cookie:sessionid=foo;another-cookie=bar'

GET / HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Connection: keep-alive
Cookie: sessionid=foo;another-cookie=bar
Host: example.org
User-Agent: HTTPie/0.9.9

If you often deal with cookies in your requests, then chances are you'd appreciate the sessions feature.

11 Authentication
The currently supported authentication schemes are Basic and Digest (see auth plugins for more). There
are two flags that control authentication:

--auth, -a Pass a username:password pair as the argument. Or, if you only specify
a username (-a username), you'll be prompted for the password before
the request is sent. To send an empty password, pass username:. The
username:password@hostname URL syntax is supported as well (but
credentials passed via -a have higher priority).

--auth-type, -A Specify the auth mechanism. Possible values are basic and digest. The
default value is basic so it can often be omitted.

11.1 Basic auth

$ http -a username:password example.org

11.2 Digest auth

$ http -A digest -a username:password example.org

11.3 Password prompt

$ http -a username example.org

11.4 .netrc
Authentication information from your ~/.netrc file is honored as well:

$ cat ~/.netrc
machine httpbin.org
login httpie
password test

$ http httpbin.org/basic-auth/httpie/test
HTTP/1.1 200 OK
[...]

11.5 Auth plugins
Additional authentication mechanism can be installed as plugins. They can be found on the Python
Package Index. Here's a few picks:

• httpie-api-auth: ApiAuth

• httpie-aws-auth: AWS / Amazon S3

• httpie-edgegrid: EdgeGrid

• httpie-hmac-auth: HMAC

• httpie-jwt-auth: JWTAuth (JSON Web Tokens)

• httpie-negotiate: SPNEGO (GSS Negotiate)

• httpie-ntlm: NTLM (NT LAN Manager)

• httpie-oauth: OAuth

• requests-hawk: Hawk

12 HTTP redirects
By default, HTTP redirects are not followed and only the first response is shown:

$ http httpbin.org/redirect/3

12.1 Follow Location
To instruct HTTPie to follow the Location header of 30x responses and show the final response instead,
use the --follow, -F option:

$ http --follow httpbin.org/redirect/3

12.2 Showing intermediary redirect responses
If you additionally wish to see the intermediary requests/responses, then use the --all option as well:

$ http --follow --all httpbin.org/redirect/3

12.3 Limiting maximum redirects followed
To change the default limit of maximum 30 redirects, use the --max-redirects=<limit> option:

$ http --follow --all --max-redirects=5 httpbin.org/redirect/3

https://pypi.python.org/pypi?%3Aaction=search&term=httpie&submit=search
https://pypi.python.org/pypi?%3Aaction=search&term=httpie&submit=search
https://github.com/pd/httpie-api-auth
https://github.com/httpie/httpie-aws-auth
https://github.com/akamai-open/httpie-edgegrid
https://github.com/guardian/httpie-hmac-auth
https://github.com/teracyhq/httpie-jwt-auth
https://github.com/ndzou/httpie-negotiate
https://github.com/httpie/httpie-ntlm
https://github.com/httpie/httpie-oauth
https://github.com/mozilla-services/requests-hawk

13 Proxies
You can specify proxies to be used through the --proxy argument for each protocol (which is included in
the value in case of redirects across protocols):

$ http --proxy=http:http://10.10.1.10:3128 --proxy=https:https://10.10.1.10:1080 example.org

With Basic authentication:

$ http --proxy=http:http://user:pass@10.10.1.10:3128 example.org

13.1 Environment variables
You can also configure proxies by environment variables HTTP_PROXY and HTTPS_PROXY, and the
underlying Requests library will pick them up as well. If you want to disable proxies configured through the
environment variables for certain hosts, you can specify them in NO_PROXY.

In your ~/.bash_profile:

export HTTP_PROXY=http://10.10.1.10:3128
export HTTPS_PROXY=https://10.10.1.10:1080
export NO_PROXY=localhost,example.com

13.2 SOCKS
Homebrew-installed HTTPie comes with SOCKS proxy support out of the box. To enable SOCKS proxy
support for non-Homebrew installations, you'll need to install requests[socks] manually using pip:

$ pip install -U requests[socks]

Usage is the same as for other types of proxies:

$ http --proxy=http:socks5://user:pass@host:port --proxy=https:socks5://user:pass@host:port example.org

14 HTTPS

14.1 Server SSL certificate verification
To skip the host's SSL certificate verification, you can pass --verify=no (default is yes):

$ http --verify=no https://example.org

14.2 Custom CA bundle
You can also use --verify=<CA_BUNDLE_PATH> to set a custom CA bundle path:

$ http --verify=/ssl/custom_ca_bundle https://example.org

14.3 Client side SSL certificate
To use a client side certificate for the SSL communication, you can pass the path of the cert file with
--cert:

$ http --cert=client.pem https://example.org

If the private key is not contained in the cert file you may pass the path of the key file with --cert-key:

$ http --cert=client.crt --cert-key=client.key https://example.org

14.4 SSL version
Use the --ssl=<PROTOCOL> to specify the desired protocol version to use. This will default to SSL v2.3
which will negotiate the highest protocol that both the server and your installation of OpenSSL support.
The available protocols are ssl2.3, ssl3, tls1, tls1.1, tls1.2, tls1.3. (The actually available set
of protocols may vary depending on your OpenSSL installation.)

Specify the vulnerable SSL v3 protocol to talk to an outdated server:
$ http --ssl=ssl3 https://vulnerable.example.org

14.5 SNI (Server Name Indication)
If you use HTTPie with Python version lower than 2.7.9 (can be verified with http --debug) and need to
talk to servers that use SNI (Server Name Indication) you need to install some additional dependencies:

$ pip install --upgrade requests[security]

You can use the following command to test SNI support:

$ http https://sni.velox.ch

15 Output options
By default, HTTPie only outputs the final response and the whole response message is printed (headers
as well as the body). You can control what should be printed via several options:

--headers, -h Only the response headers are printed.

--body, -b Only the response body is printed.

--verbose, -v Print the whole HTTP exchange (request and response). This option also
enables --all (see below).

--print, -p Selects parts of the HTTP exchange.

--verbose can often be useful for debugging the request and generating documentation examples:

$ http --verbose PUT httpbin.org/put hello=world
PUT /put HTTP/1.1
Accept: application/json, */*
Accept-Encoding: gzip, deflate
Content-Type: application/json
Host: httpbin.org
User-Agent: HTTPie/0.2.7dev

{
 "hello": "world"
}

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 477
Content-Type: application/json
Date: Sun, 05 Aug 2012 00:25:23 GMT
Server: gunicorn/0.13.4

{
 […]
}

15.1 What parts of the HTTP exchange should be printed
All the other output options are under the hood just shortcuts for the more powerful --print, -p. It
accepts a string of characters each of which represents a specific part of the HTTP exchange:

Character Stands for

H request headers

B request body

h response headers

b response body

Print request and response headers:

$ http --print=Hh PUT httpbin.org/put hello=world

15.2 Viewing intermediary requests/responses
To see all the HTTP communication, i.e. the final request/response as well as any possible intermediary
requests/responses, use the --all option. The intermediary HTTP communication include followed
redirects (with --follow), the first unauthorized request when HTTP digest authentication is used
(--auth=digest), etc.

Include all responses that lead to the final one:
$ http --all --follow httpbin.org/redirect/3

The intermediary requests/response are by default formatted according to --print, -p (and its
shortcuts described above). If you'd like to change that, use the --history-print, -P option. It takes
the same arguments as --print, -p but applies to the intermediary requests only.

Print the intermediary requests/responses differently than the final one:
$ http -A digest -a foo:bar --all -p Hh -P H httpbin.org/digest-auth/auth/foo/bar

15.3 Conditional body download
As an optimization, the response body is downloaded from the server only if it's part of the output. This is
similar to performing a HEAD request, except that it applies to any HTTP method you use.

Let's say that there is an API that returns the whole resource when it is updated, but you are only
interested in the response headers to see the status code after an update:

$ http --headers PATCH example.org/Really-Huge-Resource name='New Name'

Since we are only printing the HTTP headers here, the connection to the server is closed as soon as all
the response headers have been received. Therefore, bandwidth and time isn't wasted downloading the
body which you don't care about. The response headers are downloaded always, even if they are not part
of the output

16 Redirected Input
The universal method for passing request data is through redirected stdin (standard input)—piping. Such
data is buffered and then with no further processing used as the request body. There are multiple useful
ways to use piping:

Redirect from a file:

$ http PUT example.com/person/1 X-API-Token:123 < person.json

Or the output of another program:

$ grep '401 Unauthorized' /var/log/httpd/error_log | http POST example.org/intruders

You can use echo for simple data:

$ echo '{"name": "John"}' | http PATCH example.com/person/1 X-API-Token:123

You can also use a Bash here string:

$ http example.com/ <<<'{"name": "John"}'

You can even pipe web services together using HTTPie:

$ http GET https://api.github.com/repos/jakubroztocil/httpie | http POST httpbin.org/post

You can use cat to enter multiline data on the terminal:

$ cat | http POST example.com
<paste>
^D

$ cat | http POST example.com/todos Content-Type:text/plain
- buy milk
- call parents
^D

On OS X, you can send the contents of the clipboard with pbpaste:

$ pbpaste | http PUT example.com

Passing data through stdin cannot be combined with data fields specified on the command line:

$ echo 'data' | http POST example.org more=data # This is invalid

To prevent HTTPie from reading stdin data you can use the --ignore-stdin option.

https://github.com/jkbr/httpie/issues
https://gitter.im/jkbrzt/httpie
https://stackoverflow.com
http://stackoverflow.com/questions/tagged/httpie
https://twitter.com/clihttp
https://twitter.com/jakubroztocil
http://python-requests.org
http://pygments.org/
https://stedolan.github.io/jq/
https://github.com/eliangcs/http-prompt
https://github.com/jakubroztocil/httpcat
https://curl.haxx.se
https://github.com/jakubroztocil/httpie/blob/master/CONTRIBUTING.rst
https://github.com/jakubroztocil/httpie/blob/master/CHANGELOG.rst
https://github.com/claudiatd/httpie-artwork
https://github.com/claudiatd
https://raw.githubusercontent.com/jakubroztocil/httpie/master/httpie.gif
https://github.com/loranallensmith
https://github.com/jakubroztocil/httpie/blob/master/LICENSE

https://roztocil.co
https://twitter.com/jakubroztocil
https://github.com/jakubroztocil/httpie/contributors

	1 Main features
	2 Installation
	2.1 macOS
	2.2 Linux
	2.3 Windows, etc.
	2.4 Python version
	2.5 Unstable version

	3 Usage
	3.1 Examples

	4 HTTP method
	5 Request URL
	5.1 Querystring parameters
	5.2 URL shortcuts for localhost
	5.3 Custom default scheme

	6 Request items
	6.1 Escaping rules

	7 JSON
	7.1 Default behaviour
	7.2 Explicit JSON
	7.3 Non-string JSON fields

	8 Forms
	8.1 Regular forms
	8.2 File upload forms

	9 HTTP headers
	9.1 Default request headers
	9.2 Empty headers and header un-setting

	10 Cookies
	11 Authentication
	11.1 Basic auth
	11.2 Digest auth
	11.3 Password prompt
	11.4 .netrc
	11.5 Auth plugins

	12 HTTP redirects
	12.1 Follow Location
	12.2 Showing intermediary redirect responses
	12.3 Limiting maximum redirects followed

	13 Proxies
	13.1 Environment variables
	13.2 SOCKS

	14 HTTPS
	14.1 Server SSL certificate verification
	14.2 Custom CA bundle
	14.3 Client side SSL certificate
	14.4 SSL version
	14.5 SNI (Server Name Indication)

	15 Output options
	15.1 What parts of the HTTP exchange should be printed
	15.2 Viewing intermediary requests/responses
	15.3 Conditional body download

	16 Redirected Input
	16.1 Request data from a filename

	17 Terminal output
	17.1 Colors and formatting
	17.2 Binary data

	18 Redirected output
	19 Download mode
	19.1 Downloaded filename
	19.2 Piping while downloading
	19.3 Resuming downloads
	19.4 Other notes

	20 Streamed responses
	20.1 Disabling buffering
	20.2 Examples use cases

	21 Sessions
	21.1 Named sessions
	21.2 Anonymous sessions
	21.3 Readonly session

	22 Config
	22.1 Config file location
	22.2 Configurable options
	22.2.1 default_options
	22.2.2 __meta__

	22.3 Un-setting previously specified options

	23 Scripting
	23.1 Best practices

	24 Meta
	24.1 Interface design
	24.2 User support
	24.3 Related projects
	24.3.1 Dependencies
	24.3.2 HTTPie friends
	24.3.3 Alternatives

	24.4 Contributing
	24.5 Change log
	24.6 Artwork
	24.7 Licence
	24.8 Authors

